Copied to
clipboard

G = C32.GL2(𝔽3)  order 432 = 24·33

The non-split extension by C32 of GL2(𝔽3) acting via GL2(𝔽3)/Q8=S3

non-abelian, soluble

Aliases: C32.GL2(𝔽3), Q8⋊C9⋊C6, Q8⋊D9⋊C3, Q8⋊(C9⋊C6), C6.3(C3×S4), (C3×C6).2S4, (Q8×C32).7S3, C2.3(C32.S4), Q8⋊3- 1+2⋊C2, C3.1(C3×GL2(𝔽3)), (C3×Q8).3(C3×S3), SmallGroup(432,245)

Series: Derived Chief Lower central Upper central

C1C2Q8Q8⋊C9 — C32.GL2(𝔽3)
C1C2Q8C3×Q8Q8⋊C9Q8⋊3- 1+2 — C32.GL2(𝔽3)
Q8⋊C9 — C32.GL2(𝔽3)
C1C2

Generators and relations for C32.GL2(𝔽3)
 G = < a,b,c,d,e,f | a3=b3=c4=f2=1, d2=c2, e3=fbf=b-1, eae-1=ab=ba, ac=ca, ad=da, af=fa, bc=cb, bd=db, be=eb, dcd-1=fdf=c-1, ece-1=cd, fcf=c2d, ede-1=c, fef=be2 >

36C2
3C3
3C4
18C22
3C6
12S3
36C6
4C9
8C9
9D4
9C8
3C12
3C12
6D6
6C12
18C2×C6
4D9
4C18
4D9
8C18
12C3×S3
43- 1+2
9SD16
3D12
3C3×Q8
3C3⋊C8
9C3×D4
9C24
3C3×C12
4D18
6S3×C6
4C9⋊C6
4C2×3- 1+2
4C9⋊C6
3Q82S3
9C3×SD16
2Q8⋊C9
3C3×D12
3C3×C3⋊C8
4C2×C9⋊C6
3C3×Q82S3

Character table of C32.GL2(𝔽3)

 class 12A2B3A3B3C46A6B6C6D6E8A8B9A9B9C12A12B12C12D12E18A18B18C24A24B24C24D
 size 11362336233363618182424246612121224242418181818
ρ111111111111111111111111111111    trivial
ρ211-11111111-1-1-1-111111111111-1-1-1-1    linear of order 2
ρ311-11ζ3ζ3211ζ32ζ3ζ65ζ6-1-11ζ3ζ32ζ3ζ32ζ31ζ32ζ3ζ321ζ65ζ6ζ65ζ6    linear of order 6
ρ41111ζ32ζ311ζ3ζ32ζ32ζ3111ζ32ζ3ζ32ζ3ζ321ζ3ζ32ζ31ζ32ζ3ζ32ζ3    linear of order 3
ρ51111ζ3ζ3211ζ32ζ3ζ3ζ32111ζ3ζ32ζ3ζ32ζ31ζ32ζ3ζ321ζ3ζ32ζ3ζ32    linear of order 3
ρ611-11ζ32ζ311ζ3ζ32ζ6ζ65-1-11ζ32ζ3ζ32ζ3ζ321ζ3ζ32ζ31ζ6ζ65ζ6ζ65    linear of order 6
ρ722022222220000-1-1-122222-1-1-10000    orthogonal lifted from S3
ρ82202-1--3-1+-322-1+-3-1--30000-1ζ6ζ65-1--3-1+-3-1--32-1+-3ζ6ζ65-10000    complex lifted from C3×S3
ρ92202-1+-3-1--322-1--3-1+-30000-1ζ65ζ6-1+-3-1--3-1+-32-1--3ζ65ζ6-10000    complex lifted from C3×S3
ρ102-202220-2-2-200-2--2-1-1-100000111--2-2-2--2    complex lifted from GL2(𝔽3)
ρ112-202220-2-2-200--2-2-1-1-100000111-2--2--2-2    complex lifted from GL2(𝔽3)
ρ122-202-1--3-1+-30-21--31+-300--2-2-1ζ6ζ6500000ζ32ζ31ζ83ζ328ζ32ζ87ζ385ζ3ζ87ζ3285ζ32ζ83ζ38ζ3    complex lifted from C3×GL2(𝔽3)
ρ132-202-1+-3-1--30-21+-31--300--2-2-1ζ65ζ600000ζ3ζ321ζ83ζ38ζ3ζ87ζ3285ζ32ζ87ζ385ζ3ζ83ζ328ζ32    complex lifted from C3×GL2(𝔽3)
ρ142-202-1+-3-1--30-21+-31--300-2--2-1ζ65ζ600000ζ3ζ321ζ87ζ385ζ3ζ83ζ328ζ32ζ83ζ38ζ3ζ87ζ3285ζ32    complex lifted from C3×GL2(𝔽3)
ρ152-202-1--3-1+-30-21--31+-300-2--2-1ζ6ζ6500000ζ32ζ31ζ87ζ3285ζ32ζ83ζ38ζ3ζ83ζ328ζ32ζ87ζ385ζ3    complex lifted from C3×GL2(𝔽3)
ρ1633-1333-1333-1-111000-1-1-1-1-10001111    orthogonal lifted from S4
ρ17331333-133311-1-1000-1-1-1-1-1000-1-1-1-1    orthogonal lifted from S4
ρ183313-3-3-3/2-3+3-3/2-13-3+3-3/2-3-3-3/2ζ32ζ3-1-1000ζ6ζ65ζ6-1ζ65000ζ6ζ65ζ6ζ65    complex lifted from C3×S4
ρ1933-13-3+3-3/2-3-3-3/2-13-3-3-3/2-3+3-3/2ζ65ζ611000ζ65ζ6ζ65-1ζ6000ζ3ζ32ζ3ζ32    complex lifted from C3×S4
ρ2033-13-3-3-3/2-3+3-3/2-13-3+3-3/2-3-3-3/2ζ6ζ6511000ζ6ζ65ζ6-1ζ65000ζ32ζ3ζ32ζ3    complex lifted from C3×S4
ρ213313-3+3-3/2-3-3-3/2-13-3-3-3/2-3+3-3/2ζ3ζ32-1-1000ζ65ζ6ζ65-1ζ6000ζ65ζ6ζ65ζ6    complex lifted from C3×S4
ρ224-404440-4-4-4000011100000-1-1-10000    orthogonal lifted from GL2(𝔽3)
ρ234-404-2+2-3-2-2-30-42+2-32-2-300001ζ3ζ3200000ζ65ζ6-10000    complex lifted from C3×GL2(𝔽3)
ρ244-404-2-2-3-2+2-30-42-2-32+2-300001ζ32ζ300000ζ6ζ65-10000    complex lifted from C3×GL2(𝔽3)
ρ25660-3006-3000000000000-300000000    orthogonal lifted from C9⋊C6
ρ26660-300-2-300000000044-21-20000000    orthogonal lifted from C32.S4
ρ27660-300-2-3000000000-2-2-3-2+2-31+-311--30000000    complex lifted from C32.S4
ρ28660-300-2-3000000000-2+2-3-2-2-31--311+-30000000    complex lifted from C32.S4
ρ2912-120-60006000000000000000000000    orthogonal faithful

Smallest permutation representation of C32.GL2(𝔽3)
On 72 points
Generators in S72
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 25 22)(20 23 26)(28 34 31)(29 32 35)(38 44 41)(39 42 45)(46 52 49)(47 50 53)(56 62 59)(57 60 63)(64 70 67)(65 68 71)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)
(1 40 36 15)(2 22 28 52)(3 63 29 68)(4 43 30 18)(5 25 31 46)(6 57 32 71)(7 37 33 12)(8 19 34 49)(9 60 35 65)(10 56 44 70)(11 47 45 26)(13 59 38 64)(14 50 39 20)(16 62 41 67)(17 53 42 23)(21 61 51 66)(24 55 54 69)(27 58 48 72)
(1 61 36 66)(2 41 28 16)(3 23 29 53)(4 55 30 69)(5 44 31 10)(6 26 32 47)(7 58 33 72)(8 38 34 13)(9 20 35 50)(11 57 45 71)(12 48 37 27)(14 60 39 65)(15 51 40 21)(17 63 42 68)(18 54 43 24)(19 59 49 64)(22 62 52 67)(25 56 46 70)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(2 9)(3 8)(4 7)(5 6)(10 57)(11 56)(12 55)(13 63)(14 62)(15 61)(16 60)(17 59)(18 58)(19 53)(20 52)(21 51)(22 50)(23 49)(24 48)(25 47)(26 46)(27 54)(28 35)(29 34)(30 33)(31 32)(37 69)(38 68)(39 67)(40 66)(41 65)(42 64)(43 72)(44 71)(45 70)

G:=sub<Sym(72)| (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(38,44,41)(39,42,45)(46,52,49)(47,50,53)(56,62,59)(57,60,63)(64,70,67)(65,68,71), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69), (1,40,36,15)(2,22,28,52)(3,63,29,68)(4,43,30,18)(5,25,31,46)(6,57,32,71)(7,37,33,12)(8,19,34,49)(9,60,35,65)(10,56,44,70)(11,47,45,26)(13,59,38,64)(14,50,39,20)(16,62,41,67)(17,53,42,23)(21,61,51,66)(24,55,54,69)(27,58,48,72), (1,61,36,66)(2,41,28,16)(3,23,29,53)(4,55,30,69)(5,44,31,10)(6,26,32,47)(7,58,33,72)(8,38,34,13)(9,20,35,50)(11,57,45,71)(12,48,37,27)(14,60,39,65)(15,51,40,21)(17,63,42,68)(18,54,43,24)(19,59,49,64)(22,62,52,67)(25,56,46,70), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,9)(3,8)(4,7)(5,6)(10,57)(11,56)(12,55)(13,63)(14,62)(15,61)(16,60)(17,59)(18,58)(19,53)(20,52)(21,51)(22,50)(23,49)(24,48)(25,47)(26,46)(27,54)(28,35)(29,34)(30,33)(31,32)(37,69)(38,68)(39,67)(40,66)(41,65)(42,64)(43,72)(44,71)(45,70)>;

G:=Group( (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(38,44,41)(39,42,45)(46,52,49)(47,50,53)(56,62,59)(57,60,63)(64,70,67)(65,68,71), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69), (1,40,36,15)(2,22,28,52)(3,63,29,68)(4,43,30,18)(5,25,31,46)(6,57,32,71)(7,37,33,12)(8,19,34,49)(9,60,35,65)(10,56,44,70)(11,47,45,26)(13,59,38,64)(14,50,39,20)(16,62,41,67)(17,53,42,23)(21,61,51,66)(24,55,54,69)(27,58,48,72), (1,61,36,66)(2,41,28,16)(3,23,29,53)(4,55,30,69)(5,44,31,10)(6,26,32,47)(7,58,33,72)(8,38,34,13)(9,20,35,50)(11,57,45,71)(12,48,37,27)(14,60,39,65)(15,51,40,21)(17,63,42,68)(18,54,43,24)(19,59,49,64)(22,62,52,67)(25,56,46,70), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,9)(3,8)(4,7)(5,6)(10,57)(11,56)(12,55)(13,63)(14,62)(15,61)(16,60)(17,59)(18,58)(19,53)(20,52)(21,51)(22,50)(23,49)(24,48)(25,47)(26,46)(27,54)(28,35)(29,34)(30,33)(31,32)(37,69)(38,68)(39,67)(40,66)(41,65)(42,64)(43,72)(44,71)(45,70) );

G=PermutationGroup([[(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,25,22),(20,23,26),(28,34,31),(29,32,35),(38,44,41),(39,42,45),(46,52,49),(47,50,53),(56,62,59),(57,60,63),(64,70,67),(65,68,71)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69)], [(1,40,36,15),(2,22,28,52),(3,63,29,68),(4,43,30,18),(5,25,31,46),(6,57,32,71),(7,37,33,12),(8,19,34,49),(9,60,35,65),(10,56,44,70),(11,47,45,26),(13,59,38,64),(14,50,39,20),(16,62,41,67),(17,53,42,23),(21,61,51,66),(24,55,54,69),(27,58,48,72)], [(1,61,36,66),(2,41,28,16),(3,23,29,53),(4,55,30,69),(5,44,31,10),(6,26,32,47),(7,58,33,72),(8,38,34,13),(9,20,35,50),(11,57,45,71),(12,48,37,27),(14,60,39,65),(15,51,40,21),(17,63,42,68),(18,54,43,24),(19,59,49,64),(22,62,52,67),(25,56,46,70)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(2,9),(3,8),(4,7),(5,6),(10,57),(11,56),(12,55),(13,63),(14,62),(15,61),(16,60),(17,59),(18,58),(19,53),(20,52),(21,51),(22,50),(23,49),(24,48),(25,47),(26,46),(27,54),(28,35),(29,34),(30,33),(31,32),(37,69),(38,68),(39,67),(40,66),(41,65),(42,64),(43,72),(44,71),(45,70)]])

Matrix representation of C32.GL2(𝔽3) in GL8(𝔽73)

640000000
064000000
00100000
00010000
003665364500
002748453600
002072003628
004655002836
,
10000000
01000000
0036280000
0028360000
00245362800
006849283600
004564003628
00928002836
,
072000000
10000000
000720000
007200000
008380100
003881000
00363700720
0096400072
,
6172000000
7212000000
00010000
00100000
00444472000
00565607200
00295600072
00562900720
,
665000000
66000000
001433725600
004331567200
0034534503628
0024520672836
00254041200
003061293100
,
10000000
6172000000
00100000
000720000
002872003628
004847004537
005739362800
003015453700

G:=sub<GL(8,GF(73))| [64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,36,27,20,46,0,0,0,1,65,48,72,55,0,0,0,0,36,45,0,0,0,0,0,0,45,36,0,0,0,0,0,0,0,0,36,28,0,0,0,0,0,0,28,36],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,28,24,68,45,9,0,0,28,36,5,49,64,28,0,0,0,0,36,28,0,0,0,0,0,0,28,36,0,0,0,0,0,0,0,0,36,28,0,0,0,0,0,0,28,36],[0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,8,38,36,9,0,0,72,0,38,8,37,64,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[61,72,0,0,0,0,0,0,72,12,0,0,0,0,0,0,0,0,0,1,44,56,29,56,0,0,1,0,44,56,56,29,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0],[66,6,0,0,0,0,0,0,5,6,0,0,0,0,0,0,0,0,14,43,34,2,25,30,0,0,33,31,5,45,40,61,0,0,72,56,34,20,4,29,0,0,56,72,50,67,12,31,0,0,0,0,36,28,0,0,0,0,0,0,28,36,0,0],[1,61,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,28,48,57,30,0,0,0,72,72,47,39,15,0,0,0,0,0,0,36,45,0,0,0,0,0,0,28,37,0,0,0,0,36,45,0,0,0,0,0,0,28,37,0,0] >;

C32.GL2(𝔽3) in GAP, Magma, Sage, TeX

C_3^2.{\rm GL}_2({\mathbb F}_3)
% in TeX

G:=Group("C3^2.GL(2,3)");
// GroupNames label

G:=SmallGroup(432,245);
// by ID

G=gap.SmallGroup(432,245);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,632,261,142,1011,3784,1908,172,2273,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=f^2=1,d^2=c^2,e^3=f*b*f=b^-1,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=f*d*f=c^-1,e*c*e^-1=c*d,f*c*f=c^2*d,e*d*e^-1=c,f*e*f=b*e^2>;
// generators/relations

Export

Subgroup lattice of C32.GL2(𝔽3) in TeX
Character table of C32.GL2(𝔽3) in TeX

׿
×
𝔽